Long-range triggered earthquakes that continue after the wave train passes
نویسنده
چکیده
[1] Large earthquakes can trigger distant earthquakes in geothermal areas. Some triggered earthquakes happen while the surface waves pass through a site, but others occur hours or even days later. Does this prolonged seismicity require a special mechanism to store the stress from the seismic waves that differs from ordinary aftershock mechanisms? These questions have driven studies of long-range triggering since the phenomenon’s discovery. Here I attempt to answer the questions by examining the statistics of triggered sequences. Two separate observations are consistent with the prolonged sequences being simply local aftershocks of earthquakes triggered early in the wave train. First, the sequences obey Omori’s Law over both short (1 hour) and longer (5 day) time intervals. Secondly, the number of observed triggered earthquakes in the first hour after the wave train can be predicted from the number of earthquakes triggered during the wave train. Even the very vigorous 10-day triggering at Long Valley from the 1992 Landers Mw 7.3 earthquakes can be interpreted as the aftershocks of either a local M 4.1 earthquake or an equivalent combination of several smaller mainshocks. Therefore, long-range triggering does not need to include a mechanism to produce sustained stresses other than the process that generates aftershocks of the earthquakes that occur while the wave train is passing. Citation: Brodsky, E. E. (2006), Long-range triggered earthquakes that continue after the wave train passes, Geophys. Res. Lett., 33, L15313, doi:10.1029/2006GL026605.
منابع مشابه
Remotely Triggered Seismicity on the United States West Coast following the Mw 7.9 Denali Fault Earthquake
The Mw 7.9 Denali fault earthquake in central Alaska of 3 November 2002 triggered earthquakes across western North America at epicentral distances of up to at least 3660 km. We describe the spatial and temporal development of triggered activity in California and the Pacific Northwest, focusing on Mount Rainier, the Geysers geothermal field, the Long Valley caldera, and the Coso geothermal field...
متن کاملGlobal ubiquity of dynamic earthquake triggering
Earthquakes can be triggered by local changes in the stress field (static triggering) due to nearby earthquakes or by stresses caused by the passage of surface (Rayleigh and Love) waves from a remote, large earthquake (dynamic triggering). However, the mechanism, frequency, controlling factors and the global extent of dynamic triggering are yet to be fully understood. Because Rayleigh waves inv...
متن کاملRemote triggering of non-volcanic tremor around Taiwan
S U M M A R Y We perform a systematic survey of triggered deep ‘non-volcanic’ tremor beneath the Central Range (CR) in Taiwan for 45 teleseismic earthquakes from 1998 to 2009 with Mw ≥ 7.5 and epicentral distance≥1000 km to the broad-band station TPUB. Triggered tremors are visually identified as bursts of high-frequency (2–8 Hz), non-impulsive and long-duration seismic energy that are coherent...
متن کاملIntraplate Triggered Earthquakes: Observations and Interpretation
We present evidence that at least two of the three 1811–1812 New Madrid, central United States, mainshocks and the 1886 Charleston, South Carolina, earthquake triggered earthquakes at regional distances. In addition to previously published evidence for triggered earthquakes in the northern Kentucky/southern Ohio region in 1812, we present evidence suggesting that triggered events might have occ...
متن کاملارزیابی خطر پذیری مسیر انتخابی احداث راه آهن حدفاصل اصفهان و اهواز در مقابل زلزله
The earthquake is a natural disaster that damages structure and lifeline and is simply inserted into human artifacts. For this reason the structures and lifeline, earthquake loads shall estimate and in order to provide its design.in Iran earthquake, risk of natural disasters is dominant. It should be noted that Iran in recent years, an earthquake with a magnitude of 7.5 Richter scale or more fr...
متن کامل